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Abstract-The average evaporati& heat-transfer coefficient for the interline region of an adsorption 
controlled wetting film in which the disjoining pressure is approximated by Pd = -&-’ can be 
represented by fi = hid[l -0.5(~-’ +q-‘)I. h”’ is the ideal liquid-vapor interfacial heat-transfer coefficient 
and q is a function of the physical properties of the system and the extent of the interline region. 
A simple procedure to obtain the heat-transfer coefficient is presented. The coefficient varies from zero 
at the interline to a value equal to the liquid-vapor interfacial heat-transfer coefficient over a relatively 

short distance. 

NOMENCLATURE 

A, dispersion constant [J]; 
A 1 z, Hamaker constant [J]; 

f> fugacity [N . m- ‘I; 

G, constant in equation (21) [m-‘1; 

H, molar latent heat of vaporization [J . mol-‘1; 

h, heat-transfer coefficient [W .rnd2. K-l]; 

hf,, latent heat of vaporization [J kg-‘]; 

I, constant in equation (22) [ml; 

K, curvature [m-l]; 

M, molecular weight [kg’mol-‘I; 

m, mass flux [kg.m-2.s-‘]; 

P, pressure [N .rnm2]; 
2, universal gas constant [J mole1 K- ‘1; 

T. temperature [K]; 

u, velocity [m’s_‘]; 

V. molar volume [m3 .mol-‘I. 

Greek symbols 

?J9 dimensionless heat-transfer coefficient; 

6, film thickness [m]; 

r, mass flowrate per unit width [kg’m-’ .s-‘1; 

E, dimensionless perturbation in equation (30a); 

60, dielectric constant [dimensionless]; 

49 dimensionless film thickness; 

% absolute viscosity [kg.m-‘.s-‘1; 

v, kinematic viscosity [m2. s-l]; 
V”, characteristic dispersion frequency [s-l]; 

5. dimensionless film length coordinate; 

P* density [kg.m-3]; 

0, evaporation coefficient [dimensionless]; 

gl”, surface tension [N m - ‘1. 

Subscripts 

d, disjoining; 

e. evaporative; 

1, liquid phase ; 
Iv, liquid-vapor interface; 

*Present address : Knolls Atomic Power Lab., Niskayuna, 
N.Y. 

0, evaluated at interline; 

0, vapor phase; 

2, substrate (solid); 

1, fluid. 

Superscripts 

averaged; 

id, ideal; 
* differentiation with respect to 5. 

1. INTRODUCTION 

THE HEAT-TRANSFER coefficient in the interline region 
(junction of vapor, adsorbed evaporating thin film 
and adsorbed non-evaporating thin film) is of consider- 

able importance in many change-of-phase heat-transfer 
processes. For example, analysis of the rewetting of a 
hot spot and the analysis of evaporation from a stable 

evaporating meniscus would both be enhanced by a 
better understanding of the interline heat-transfer 
coefficient. The present study provides a simple and 
effective procedure to obtain the interline region heat- 
transfer coefficient from the physical properties of the 
system. The present study is limited to wetting, non- 
polar liquids. The heat-transfer coefficient in the inter- 
line region is shown to change from a value of zero 
at the interline to a value equal to the liquid-vapor 
interfacial heat-transfer coefficient over a very short 
distance. 

Using adsorption isotherms and the disjoining 
pressure concept, Deryagin et al. have demonstrated 

that thin film transport is capable of enhancing the 
evaporation rate from capillaries [l]. The stability of 
an evaporating meniscus formed on a vertical flat plate 

immersed in a pool of saturated liquid has been 
experimentally demonstrated [2]. These studies led to 
a model of the stable evaporating meniscus which was 
based on the hypothesis that fluid flow in the evap- 
orating meniscus resulted from a change in the 
meniscus profile which created the necessary pressure 
gradient [3]. Experimental data confirming this hy- 
pothesis for liquid films with thicknesses greater than 
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Experiments [8] indicate that the relationship between 
disjoining pressure and film thickness for flat films of 
non-polar liquids can be represented by 
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1.2 x lo- 7 m have been obtained [4]. Power-law solu- 
tions for evaporation from finned surfaces in which 
fluid flow results from a curvature gradient have also 
been proposed [5]. In a study of the dynamics of the 
wetting process, fluid motion resulting from London- 
van der Waals forces acting between the fluid and solid 
has been analysed [6]. In this study the intermolecular 
forces governing the system were related to the dis- 
joining pressure concept and the Hamaket constant. 
Various theoretical techniques for calculating Hamaker 
constants are available, e.g. [7]. One of these tech- 
niques, which makes use of the optical constants of 
the Auid and solid is used in the present study. Using 
this approach the theoretical heat-transfer coefficient 
is conveniently related to the optical constants of the 
system. 

pd= -;16-3 . (3) 

where 2 is related to the Hamaker constant which 
accounts for the London-van der Waals forces between 
atoms. Thus 

Various authors [l, 3,693 have suggested that a dis- 
joining pressure gradient is sufficient to support fluid 
flow. The pressure gradient in the liquid film resulting 
from the thickness gradient is obtained by diffet- 
entiating (4): 

2. DEVELOPMENT OF THE EQUATIONS 

The system to be studied consists of a thin, adsorbed 
film of pure liquid on a horizontal solid substrate 
(see Fig. 1). The analysis is restricted to non-polar 
liquids wetting the solid substrate in which the inter- 
molecular interactions can be predicted from London’s 
theory of dispersion forces. The liquid film and solid 
substrate are assumed to be at a temperature above the 
saturation temperature of the liquid. If the film is 
sufficiently thin it is kept from evaporating by van der 
Waals dispersion forces between the solid and liquid. 

dP, 
dx = 3mc5-4. 

Under the influence of this pressure gradient, the 
velocity distribution at any point in the slightly tapered 
thin film, assuming a continuum, is obtained from the 
momentum equation : 

The boundary conditions are the traditional no-slip 
condition at the liquid-solid interface and no-shear 
conditions at the liquid-vapor interface. For these 
boundary conditions the velocity distribution in the 
film is VAPOR 

EVAPORATING 
/THIN FILM , 

FIG. 1. Interline junction of vapor, adsorbed 
evaporating thin film and adsorbed non- 

evaporating thin film. 

If a section of the film is slightly tapered, portions of 
the film may be sufficiently thick to allow evaporation. 
The junction between the non-evaporating and the 
evaporating thin films is the interline. Fluid flows in 
the negative “X” direction in the evaporating thin 
film as a result of a pressure gradient in the film arising 
from the film thickness gradient. There is a steady-state 
source of Auid outside of the analyzed region. 

The relationship between the vapor pressure of the 
thin film and the saturation pressure at the film 
temperature is given by Deryagin and Zorin [S] as 

In this expression Pd is the ‘*disjoining pressure” and 
is the “‘decrease in liquid pressure” resulting from the 
van der Waals dispersion forces between the adsorbed 
thin film and the solid substrate. Thus the disjoining 
pressure represents the reduction in film pressure from 
the reference vapor pressure: 

dP, d% 
z=!Jdy2. (61 

The mass flow rate per unit width of film is obtained 
from (7) as 

s 6 

l-=p (8) 
0 

Combining (5) and (8) gives the mass flow rate in 
terms of the thickness gradient: 

The evaporative mass flux leaving the film surface is 
obtained from (9) as 

The evaporative heat flux is then 

Schrage [lo] developed an expression relating the 
liquid-vapor interfacial conditions to the mass flux of 
matter crossing the interface which has been used 
extensively [ll-131. Using this approach the resultant 
heat flux is expressed as 

Pd = Pi-P,. 
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For small liquid superheats 1;:” z T’,‘,” 3 T”’ and 
(11) and (12) combine to give 

(;I = + ($-)(&J2(P”~“-P”). (13) 

The thermodynamic equation for the change in liquid 
fugacity with liquid pressure and temperature is 

dlnfi = ;dP,+$dT, 
I I 

(14) 

where Zfid is the “ideal” molar heat of vaporization for 
a liquid expanding into a vacuum. For most normal 
liquids at moderate temperatures and pressures the 
ideal heat of vaporization is closely approximated by 
the ordinary latent heat MhJ,. Since lnfis an extensive 
property, (14) may be integrated without regard to the 
path of integration. Integrating (14) over a range where 
the fugacity is approximately 
pressure of the liquid gives : 

s I 

P”I=P”I” 
dlnfi = d In P,, 

P”I=P” 

d In P,,, + 

equal to the vapor 

dln P,,,. (15) 
Jconst. p, =Pu J ccmst. T, = 3% 

The first integration is along an isobaric path between 
the vapor phase temperature T, and the interfacial 
temperature 7;” 

s dlnP,, = +7;,-T,). (16) 
P,=P” D IO 

The second integration is along an isothermal path 
between the vapor phase pressure P, and the liquid 
phase pressure P, 

s 
d In Pvl = 2 (Pl - P,). (17) 

Tj=T, 

Combining (15), (16) and (17) and making use of (2) 
gives : 

+ ~(&5)+~. (18) 
” ” Iv Iv 

For small changes in vapor pressure the L.H.S. of (18) 
can be approximated by a truncated Taylor series as: 

P vlv -P, 
- = g+(h,-T.)+g$ 

P, ” Iv 
(19) 

Combining (13) and (19) and using (4) gives, after 
rearranging 

6’ ’ 0 s = -1F3+G (20) 

where 

G = + (&)(&>“’ (f+)(G) (21) 

I = v(g--)(&)‘:2(-g). (22) 

Equation (20) can now be used with (11) to obtain 
the local heat-transfer coefficient as 

- 

h= v(~~Tf16-3+G). (23) 
” ” 

The interline film thickness, 60, is found from (23) 
when h = 0 as 

For very thick films 6 -+ cc and the “ideal” local heat- 
transfer coefficient which neglects adsorption forces 
becomes 

_ 
hrs AG hid = ~. 

vG-- TJ 
(25) 

The ratio of the local to ideal heat-transfer coefficients 
thus becomes 

= l-~-~. (26) 

The term (S,/S)3 in (26) represents the ratio of change 
in vapor pressure resulting from adsorption to the 
change resulting from the temperature increase. q is 
also the ratio of the local film thickness to the interline 
film thickness. For a sufficiently thick film the solid 
does not affect the heat-transfer coefficient. 

The ratio of local to ideal heat-transfer coefficients 
averaged over the range of applicability of the present 
study is obtained from (26) as 

s 

d 
yd6 

++ 

s 

= l-+(q-’ +q_2). (27) 
d6 

do 

Equation (20) can be made dimensionless by a simple 
change of variable. Let 

? = W% (28a) 

t2 = Gx’. (28b) 

Equation (20) then becomes 

V * * 

0 Y- 
= 1-q-3 (29) 

where the asterisk indicates differentiation with respect 
to the new independent variable 5. It should be noted 
that t2 represents the ratio of the “ideal” evaporation 
rate from a thin film due to the liquid superheat alone 
neglecting the effect of adsorption to the actual flow 
of liquid into the film (real rate of evaporation from 
the film). 

3. NUMERICAL RESULTS AND DISCUSSION 

Equation (29) can be solved by a number of numerical 
techniques to obtain the dimensionless film profile. 
This equation was solved using the orthogonal 
collocation method [14,15] with the following initial 
conditions : 

q(O) = 1 +E (30a) 

E was chosen to be 0.001 which corresponds to a local 
heat-transfer coefficient equal to approximately 0.3% 
of the ideal value (6 = l.OOl& where 6,, is usually 
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Table 1. Calculated Hamaker and dispersion constants for several liquids on various 
dielectric substrates at 20°C 

Liquid Fused silica Crown glass 
Dense 

flint glass 

6.12 x lo-*’ 6.65 x lo-*’ 6.82 x lo-” 
3.25 x 10m2’ 3.53 x 1o-2’ 3.62 x lo-” 2.014 

CbHe$ :;_I’ 6.47 x lo-= 7.03 x 10-Z” 7.23 x lo-” 
3.43 x loo-*’ 3.73 x lo-z1 3.84 x IO-*’ 

2.196 

HzO: ‘412 5.41 x 1o-20 5.86 x lO-‘O 5.94 x 1o-*O 
A 2.87 x 1O-21 3.11 x 1o-2’ 3.15 x lo-*’ 

1.77 

c20 2.0983 2.2199 2.536 

t Dispersion data of [ 16,171. 
fData of [7] used. 

FIG. 2. Dimensionless heat-transfer coefficient profiles and 
dimensionless film profile. 

expected to be less than Sob;). The combination of 
(30a) and (25) is equivalent to a heat flux boundary 
condition. 

The dimensionless film profile, ‘I, local heat-transfer 

coefficient, y, and average heat-transfer coefficient, 7, 
are shown in Fig. 2. The right hand ordinate can be 

conveniently calculated using (28b) and (21). The result- 
ing value of q can be used to obtain the local value 
of the film thickness or used to obtain the dimensionless 
heat-transfer coefficient. 

Specialization of Fig. 2 to specific liquid/solid 

systems is achieved through knowledge of the physical 
properties of the system. In particular the constants 
I and G are required. In order to calculate G the 
dispersion constant, A, must be obtained. The disper- 
sion constant, .& is related to the Hamaker constant, 
Al 1, for two dissimilar materials in close proximity by 

,ij= Alz--All A12 

6n =c’ 
(31) 

An interesting approach to the calculation of Hamaker 
constants is given by Gregory [7]. This approach uses 
the optical properties of the materials to obtain the 
Hamaker constant. Gregory obtained the following 
expression : 

hvlvvzv (C*0-1)(E20-1) 

A12 = %“+v2”) (E10+2)(E20+2)’ 
(32) 

In (32) &iO is the dielectric constant of material 1 and 

vlv is a characteristic dispersion frequency obtained 
from the optical properties of the material; h is Planck’s 

constant. Using (32) the Hamaker constants for carbon 

tetrachloride, benzene and water in contact with several 
types of glass were calculated. The results are shown 
in Table 1. Using another approach Lopez, Miller and 
Ruckenstein [6] estimated the Hamaker constant for 
Ccl4 to be 6.5 x lo-j9 J. Deryagin and Zorin [8] 
claimed an approximate experimental value of lo-‘” J. 

It should be noted that the use of (32) is limited by 
some of the assumptions used in its derivation, e.g. 
that the dielectric constant is equal to the square of 
the limiting refractive in the visible wavelength region 
[7]. The results for water are included only for com- 
parison since (3) does not apply to a polar liquid. 
Using (21) for CC14 at 293 K and AT = 0.272K with 
A = 3.25 x lo-‘iN.rn, gives G = 1.77 x 1014m-2. 

Using (25) the ideal heat-transfer coefficient, /iid, is 
found to be 7.39 x 105Jm-2s~1K~’ at 293K for 

AT = 0.272 K. The ideal heat-transfer coefficient is, of 
course, a strong function of the temperature. 

These results can be analyzed further by evaluating 
the extent of the interline region described by the 
model, x, for three arbitrarily chosen limits: 

I. 7 = 0.999, r/ = 10 

II. 
ds 
- = 0.2, 
dx 

‘I* = 0,2&‘G-‘I* 

dK 0.9A d6 v4@** 
III. cl”- = p-, 

dx fi4 dx 
‘1’- = O.S;i/(S; Gal,). 

The first limit represents the region where the effect 
of adsorption becomes negligible as a result of the film 
thickness. The second limit represents the region where 
the slope becomes appreciable. The third limit rep- 
resents the region where a possible effect on the pressure 
gradient due to a curvature gradient is equal to 307; 
of that due to the disjoining pressure gradient. These 
two pressure gradients should have opposite signs until 
the region of curvature control is reached. First, the 
curvature increases as a result of the disjoining pressure 
gradient. Then, the curvature decreases as it controls 
the fluid flow rate. In this latter region (4) is no longer 
applicable. For Ccl4 on fused silica at 293 K and a 



The interline heat-transfer coefficient 491 

superheat of 0.272K (G = 1.77 x 1014m-2 and &, = 
2 1.7 A) the values are : 

I. q = 10, 6 = 217& x = 1.32 x lo-’ m; 

II. ?j = 4.5, 6 = 97.7 A, x = 3.83 x lo-‘m; 

III. r) = 1.76, 6 = 38.2& x = 3.08 x lo-‘m. 

For these conditions, it appears that III limits the 
transport processes in the interline region. The best 
way to model the combined effects of a pressure 
gradient resulting from a curvature gradient with one 
resulting from a thickness gradient is unknown. A 
linear model has been suggested [18]. If linear, the 
above results demonstrate that at these heat fluxes 
with Ccl4 on fused silica an increase in the curvature 
would tend to restrict the flow of liquid into the 
evaporating thin film. This could cause the process to 
become unstable and possibly oscillate or dry out. It 
could also cause a faster increase in film thickness and 
a change over to curvature controlled flow. The nature 
of the transition would depend on the coupled heat 
flux in the solid. For the above condition the heat flux 
at r~ = 1.76 is 2.01 x 105Jm-2 s-‘. Another interfacial 
effect, the surface shear stress resulting from a tem- 
perature gradient has been shown to have a negligible 
effect relative to that of the large pressure gradient in 
the liquid [ 191. 

There are aspects of the above solution which need 
experimental evaluation and refinement. Because of 
the microscopic concepts and dimensions of the prob- 
lem, this will require extensive research which is beyond 
the scope of this paper. On the other hand, sufficient 
information is available to develop the above outline 
of the important characteristics of the interline heat 
transfer process in useful form. It is expected that this 
will lead to the design of the proper experiments and 

better use of the interline heat-transfer process. 
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COEFFICIENT DE TRANSFERT THERMIQUE A L’INTERFACE DE CONTACT 
DUN FILM MOUILLANT EN EVAPORATION 

Resume-Le coefficient moyen de transfert de chaleur par evaporation d’un film mouillant control& par 
I’adsorption et dans lequel la pression de separation est approchee par Pd = - AK3 peut itre represent6 
par h = h“‘[l -O,S(q-’ +7-r)]; ha reprtsente le coefficient de transfert thermique a l’interface liquide- 
vapeur dans le cas ideal et q est une fonction des propriitea physiques du systeme et de l’etendue de la 
region interfaciale. On prisente une procedure simple permettant l’obtention du coefficient de transfert 
thermique. Le coefficient varie depuis zero au niveau de l’interface de contact jusqu’a une valeur egale 
au coefficient de transfert thermique a I’interface liquide-vapeur, cela sur une distance relativement courte. 

DER WARMEUBERGANGSKOEFFIZIENT IM RANDBEREICH EINES 
VERDAMPFENDEN BENETZENDEN FILMES 

ihsammenfassung-Der mittlere Warmeiibergangskoeffizient im Randbereich eines adsorptiv kontrol- 
lierten, benetzenden Filmes, dessen Trenndruck durch Pd = -X.6’ angenahert wird, kann durch 
h = hid[l -0,5(q-l +q-‘)] wiedergegeben werden. hid ist der ideale Warmeiibergangskoeffizient an der 
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Fliissigkeits-Dampf-Phasengrenzflache, ye ist eine Funktion der physikalischen Eigenschaften des Systems 
und der Ausdehnung des Randbereiches. Eine einfache Methode zur Ermittlung des Wlrmeiibergangs- 
koeffizienten wird vorgestellt. Der Koeffizient wPchst auf einer relativ kurzen Strecke von Null im 

Randbereich auf den an der Fl~ssigkeits-Dampf-Phasengrenzff~che giiitigen Wert an. 

K03@@MUMEHT TEl”lJlOO6MEHA MCIlAP~H3~El%Yi IXJIEHKM 
CMAYMBAIOUIEI? XKM,QKOCTM 

Amoraum- CpeaHeexHaqeHwe Kos~~HurteHTaTennootrMeHanp~perynnpyeMoMa6cop6uwe8scna- 
peHllMnneHKwc.Ma412saloutekxnn~oCTut,Kornase,?~4HHapacKnwH~satolueronaBneHItPannpoKcat\l~- 

pyeTC5, BbIpa~eH~eM Pd= -,-if--', O~~CblBaeTC~ COOT~O~eH~eM !?-hid[l -0,5(?-'+ y-2)], I"@ 

h'd-&iHneaJlbHbIif K03~~RUHeHTTennOO6MeHaHarpaHM~epa3nena~cMnKOCTb--nap,a ?j--dfyHKUMR 

@43M'leCKHX Xa,,aKTepMCTHK CC(CTeMbl H BeflHYIIHbl npOCJl0i-d XHilKOCTU. AaeTca IlpOCTOii MeTOn 

flOJly'ieHHfl KO3@#SiUMeHTa Tem006MeHa. Ha oTHocwrenbH0 KO~OTKOM PaCCTOnHclH 3HaYewie 

MeHlleTCR OT Hyfln Ha npOC,7OhKeJIO BenHWHbl,paBHOii BeJWHHeKO3@&iUHeHTa TennOO6MeHa Ha 

rpawtiuepasnena xsmKocTb--nap. 


